876 research outputs found

    Organic Farming Scenarios: Operational Analysis and Costs of implementing Innovative Technologies

    Get PDF
    The objective of this study has been to design a number of farm scenarios representing future plausible and internally consistent organic farming enterprises based on milk, pig, and plant production and use these farm scenarios as the basis for the generation of generalised knowledge on labour and machinery input and costs. Also, an impact analysis and feasibility study of introducing innovative technologies into the organic production system has been invoked. The labour demand for the production farms ranged from 61 to 253hha1 and from 194 to 396hLU1 (LU is livestock units) for work in the animal houses. Model validation results showed that farm managerial tasks amount to 14–19% of the total labour requirement. The impact of introducing new technologies and work methods related to organic farming was evaluated using two innovative examples of weed control: a weeding robot and an integrated system for band steaming. While these technologies increased the capital investment required, the labour demand was reduced by 83–85% in sugar beet and 60% in carrots, which would improve profitability by 72–85% if fully utilised. Profitability is reduced, if automation efforts result in insufficient weed removal compared to manual weeding. Specifically, the benefit gained by robotic weeding was sensitive to the weed intensity and the initial price of the equipment, but a weeding efficiency of under 25% is required to make it unprofitable. This approach demonstrates the feasibility of applying and testing operational models in organic farming systems in the continued evaluation and documentation of labour and machinery inputs

    Hortibot: Feasibility study of a plant nursing robot performing weeding operations – part IV

    Get PDF
    Based on the development of a robotic tool carrier (Hortibot) equipped with weeding tools, a feasibility study was carried out to evaluate the viability of this innovative technology. The feasibility was demonstrated through a targeted evaluation adapted to the obtainable knowledge on the system performance in horticulture. A usage scenario was designed to set the implementation of the robotic system in a row crop of seeded bulb onions considering operational and functional constraints in organic crop, production. This usage scenario together with the technical specifications of the implemented system provided the basis for the feasibility analysis, including a comparison with a conventional weeding system. Preliminary results show that the automation of the weeding tasks within a row crop has the potential of significantly reducing the costs and still fulfill the operational requirements set forth. The potential benefits in terms of operational capabilities and economic viability have been quantified. Profitability gains ranging from 20 to 50% are achievable through targeted applications. In general, the analyses demonstrate the operational and economic feasibility of using small automated vehicles and targeted tools in specialized production settings

    A Diagnostic System for Improving Biomass Quality Based on a Sensor Network

    Get PDF
    Losses during storage of biomass are the main parameter that defines the profitability of using preserved biomass as feed for animal husbandry. In order to minimize storage losses, potential changes in specific physicochemical properties must be identified to subsequently act as indicators of silage decomposition and form the basis for preventive measures. This study presents a framework for a diagnostic system capable of detecting potential changes in specific physicochemical properties, i.e., temperature and the oxygen content, during the biomass storage process. The diagnostic system comprises a monitoring tool based on a wireless sensors network and a prediction tool based on a validated computation fluid dynamics model. It is shown that the system can provide the manager (end-user) with continuously updated information about specific biomass quality parameters. The system encompasses graphical visualization of the information to the end-user as a first step and, as a second step, the system identifies alerts depicting real differences between actual and predicted values of the monitored properties. The perspective is that this diagnostic system will provide managers with a solid basis for necessary preventive measures

    Performance of machinery in potato production in one growing season

    Get PDF
    Statistics on the machinery performance are essential for farm managers to make better decisions. In this paper, the performance of all machineries in five sequential operations, namely bed forming, stone separation, planting, spraying and harvesting in the potato production system, were investigated during one growing season. In order to analyse and decompose the recorded GPS data into various time and distance elements for estimation of the machinery performance, an automatic GPS analysis tool was developed. The field efficiency and field capacity were estimated for each operation. Specifically, the measured average field efficiency was 71.3% for bed forming, 68.5% for stone separation, 40.3% for planting, 69.7% for spraying, and 67.4% for harvesting. The measured average field capacities were 1.46 ha/h, 0.53 ha/h, 0.47 ha/h, 10.21 ha/h, 0.51 ha/h, for the bed forming, stone separation, planting, spraying, and harvesting operations, respectively. These results deviate from the corresponding estimations calculated based on norm data from the American Society of Agricultural and Biological Engineers (ASABE). The deviations indicate that norms provided by ASABE cannot be used directly for the prediction of performance of the machinery used in this work. Moreover, the measured data of bed forming and stone separation could be used as supplementary data for the ASABE which does not provide performance norms for these two operations. The gained results can help farm managers to make better management and operational decisions that result in potential improvement in productivity and profitability as well as in potential environmental benefits

    Design of a wildlife avoidance planning system for autonomous harvesting operations

    Get PDF
    Harvesting and mowing operations are among the main potential stressors affecting wildlife within agricultural landscapes, leading to large animal losses. A number of studies have been conducted on harvesting practices to address the problem of wildlife mortality, providing a number of management actions or field area coverage strategies. Nevertheless, these are general rules limited to simple-shaped fields, and which are not applicable to more complex operational situations. The objectives of the present study were to design a system capable of deriving a wildlife avoidance driving pattern for any field shape complexity and field boundary conditions (in terms of escape and non-escape areas) and applicable to different animal behaviours. The assumed animal escape reactions are the result of the parameterization of a series of developed behavioural functions. This parameterization will be able to adapt any knowledge that is or might become available as a result of dedicated future experiments on animal behaviour for different species or different animal ages

    Agricultural Sustainability: A Review of Concepts and Methods

    Get PDF
    This paper presents a methodological framework for the systematic literature review of agricultural sustainability studies. The framework synthesizes all the available literature review criteria and introduces a two-level analysis facilitating systematization, data mining, and methodology analysis. The framework was implemented for the systematic literature review of 38 crop agricultural sustainability assessment studies at farm-level for the last decade. The investigation of the methodologies used is of particular importance since there are no standards or norms for the sustainability assessment of farming practices. The chronological analysis revealed that the scientific community’s interest in agricultural sustainability is increasing in the last three years. The most used methods include indicator-based tools, frameworks, and indexes, followed by multicriteria methods. In the reviewed studies, stakeholder participation is proved crucial in the determination of the level of sustainability. It should also be mentioned that combinational use of methodologies is often observed, thus a clear distinction of methodologies is not always possibl

    Agricultural Workforce Crisis in Light of the COVID-19 Pandemic

    Get PDF
    COVID-19 and the restrictive measures towards containing the spread of its infections have seriously affected the agricultural workforce and jeopardized food security. The present study aims at assessing the COVID-19 pandemic impacts on agricultural labor and suggesting strategies to mitigate them. To this end, after an introduction to the pandemic background, the negative consequences on agriculture and the existing mitigation policies, risks to the agricultural workers were benchmarked across the United States’ Standard Occupational Classification system. The individual tasks associated with each occupation in agricultural production were evaluated on the basis of potential COVID-19 infection risk. As criteria, the most prevalent virus transmission mechanisms were considered, namely the possibility of touching contaminated surfaces and the close proximity of workers. The higher risk occupations within the sector were identified, which facilitates the allocation of worker protection resources to the occupations where they are most needed. In particular, the results demonstrated that 50% of the agricultural workforce and 54% of the workers’ annual income are at moderate to high risk. As a consequence, a series of control measures need to be adopted so as to enhance the resilience and sustainability of the sector as well as protect farmers including physical distancing, hygiene practices, and personal protection equipment
    • …
    corecore